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Laser-induced cavitation bubbles near a curved rigid boundary are observed ex-
perimentally using high-speed photography. An image theory is applied to obtain
information on global bubble motion while a boundary integral method is employed
to gain a more detailed understanding of the behaviour of a liquid jet that threads
a collapsing bubble, creating a toroidal bubble. Comparisons between the theory
and experiment show that when a comparable sized bubble is located near a rigid
boundary the bubble motion is significantly influenced by the surface curvature of
the boundary, which is characterized by a parameter ξ, giving convex walls for ξ < 1,
concave walls for ξ > 1 and a flat wall when ξ = 1. If a boundary is slightly concave,
the most pronounced migration occurs at the first bubble collapse. The velocity of
a liquid jet impacting on the far side of the bubble surface tends to increase with
decreasing parameter ξ. In the case of a convex boundary, the jet velocity is larger
than that generated in the flat boundary case. Although the situation considered
here is restricted to axisymmetric motion without mean flow, this result suggests that
higher pressures can occur when cavitation bubbles collapse near a non-flat boundary.
Bubble separation, including the pinch-off phenomenon, is observed in the final stage
of the collapse of a bubble, with the oblate shape at its maximum volume attached to
the surface of a convex boundary, followed by bubble splitting which is responsible
for further bubble proliferation.

1. Introduction
As demonstrated by Benjamin & Ellis (1966), a solid boundary induces asymmetric

flow around a bubble resulting in bubble migration toward the boundary due to the
secondary Bjerknes force (Crum 1975; Pelekasis & Tsamopoulos 1993) and finally the
formation of a liquid jet. It is now recognized that a major source of erosive forces is
connected with the acoustic transient at the first and second collapses of the bubble
very close to a boundary where a ‘stand-off’ parameter, γ(= L/Rmax), defined as the
ratio of initial bubble height above the boundary, L, to maximum bubble radius,
Rmax, is very important in understanding the bubble motion (Naudé & Ellis 1961;
Blake, Taib & Doherty 1986; Tomita & Shima 1986; Vogel, Lauterborn & Timm
1989; Van der Meulen 1994).

Recently, the complicated physical process occurring during the very late stage of
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the bubble collapse has been modelled by a numerical simulation by Best (1993) and
Zhang, Duncan & Chahine (1993), and observed by ultra high-speed photography by
Ohl, Philipp & Lauterborn (1995). The numerical calculations show the detailed flow
structure after jet impact on the far side of the bubble surface, yielding a ring vortex
flow of the toroidal bubble while the schlieren technique clearly captures a jet-impact-
induced shock wave which occurs at a distance from the boundary surface before the
bubble reaches a minimum volume. Philipp & Lauterborn (1998) carried out a very
sophisticated experiment in order to elucidate the cause of cavitation erosion and
reached the conclusion that the major cause of erosion is the pressure pulses produced
by the collapse of a vortex ring bubble at its second collapse, which is basically the
same idea as pointed out by Shutler & Mesler (1965). Philipp & Lauterborn (1998)
found that the bubble shape is toroidal for γ 5 1.7 and the observed damage is in
the shape of a circular ring as previously found by Shutler & Mesler (1965) and
Tomita & Shima (1986), corresponding to the decay of the bubble torus into many
tiny bubbles, each collapsing separately around the circumference of the torus. Since
one of the key problems to be solved is concerned with the detailed characteristics
of a liquid jet and the associated phenomena because a vortex ring bubble is formed
as a result of the jet penetration through the bubble interior, Tong et al. (1999) and
Blake, Tomita & Tong (1998) undertook an investigation of the dynamics of a liquid
microjet during the bubble collapse, particularly by taking account of the role of
‘splashing’ generated after a toroidal bubble is created.

As is well known, pressure amplification occurs due to the interaction between a
shock wave and a bubble (Tulin 1969; Tomita & Shima 1986; Dear & Field 1988a;
Tomita, Shima & Takayama 1989; Philipp et al. 1993; Bourne & Field 1995), the in-
teraction between individual bubbles (Testud-Giovanneshi, Alloncle & Dufresne 1990;
Tomita, Sato & Shima 1994) and the collapse of a bubble cluster (Hansson & Mørch
1980; Chahine 1982). Vogel et al. (1989) suggested possible mechanisms for jet for-
mation by acoustic transients from adjacent bubbles and/or the change of jet velocity
due to deviation from the spherical bubble form which may occur in a fluid flow.

Another important factor influencing the damage of material is the geometry of a
boundary surface. It is a familiar finding that in the case of vibratory cavitation the
mass loss increases drastically with the lapse of time, particularly after the incubation
period, due to the removal of particles from the material surface (Knapp, Daily
& Hammitt 1970). Once the material has lost its surface smoothness, the flow field
surrounding cavitation bubbles will be affected by the newly formed surface geometry.
In particular, the geometry is of great importance to the bubble motion when the
surface roughness is comparable to individual bubble sizes. This situation was realized
in the erosion experiment by Philipp & Lauterborn (1998) who used 100 identical
bubbles and found that the bubble torus disintegrates into many tiny bubbles, each
collapsing initially near a flat boundary but later near a non-flat surface due to
either plastic deformation of the surface or the loss of material by erosion. When
a shock wave is emitted from a bubble near a boundary with a conical depression
or with a concave surface, the subsequent reflected shock waves focus near the
boundary, producing an even higher pressure which could be a source of a driving
force to collapse other bubbles violently (Dear & Field 1988b). The high pressure
resulting from shock wave focusing has advantages for stone fragmentation during
shock wave lithotripsy and recently Zhong et al. (1997) developed a more effective
method for generating a much higher pressure by making use of a reflector with
an adjustable single or double reflecting surface. In this example a spark-induced
bubble at the first focus collapses near a concave-shaped boundary of the reflector
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Figure 1. Schematic diagram of the experimental arrangement.

accompanied by some migration toward the boundary. Subsequently a shock wave
is emitted from the bubble whose location is now nearer the bottom of the reflector,
focusing again at around the second focal point of the reflector. To investigate the
characteristics of this kind of shock wave focusing, more research is required on the
bubble–concave boundary interaction, as pointed out by Tomita et al. (1994) in their
paper on extracorporeal microexplosion lithotripsy. However, very few studies have
been undertaken to date, with exception of Takahira, Fujikawa & Akamatsu (1989),
Tomita, Shima & Takahashi (1991) and Tomita, Blake & Robinson (1998).

In this paper, we address the motion of a cavitation bubble near a curved rigid
boundary from both a theoretical and experimental perspective. To elucidate the effect
of the surface curvature of the boundary, corresponding to the exploration of the
influence of a curvature parameter ξ on the bubble motion, an image theory is applied
to develop insight into the global bubble motion, and a boundary integral method
is employed to investigate the more detailed process of jet formation followed by
the toroidal phase of a bubble after jet impact. Numerical calculations are compared
with experimental data obtained using laser-induced cavitation bubbles to show the
influence of the curvature parameter ξ on the bubble motion.

2. Experimental apparatus and method
Figure 1 is a schematic diagram of the experimental arrangement used to study

cavitation bubbles near a curved boundary. Cavitation bubbles were produced on an
axial line at a distance L from the apex of the boundary by employing a laser focusing
technique which is now standard for realizing a high energy concentration (Lauterborn
1974). A Q-switched ruby laser was used (Japan Sci. Engng. NGP-60MP), delivering
light pulses with energy up to 1.2 J with about 20 ns pulse duration, although a low
level of energy was required to produce a small bubble (e.g. about 4 mJ for a bubble
with 1 mm in radius, Tomita & Shima 1990). To effectively focus the laser beam, a sys-
tem consisting of three lenses was inserted on the line of the optical axis, in which the
laser beam was first expanded by twice the original beam diameter and after collimat-
ing it was focused into water with an aspherical convex lens whose focal length was
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Figure 2. The seven wall configurations used in the present experiment.

14 mm in air. To produce a bubble axisymmetrically near a curved wall, the laser beam
was focused from the bottom of a bubble chamber (dimensions 240 mm× 240 mm×
300 mm) through a mirror. The curved rigid walls, made of acrylic resin, were created
on the free surface side of the apparatus. The shape of the axisymmetric curved walls
is specified by the surface parameter ξ which is defined by (1) in § 3 obtained from the
image theory, giving convex walls when ξ < 1, concave walls for ξ > 1 and a flat wall
when ξ = 1. Figure 2 illustrates seven wall configurations used in the present exper-
iment for the case assuming a stand-off parameter γ = 3. Note that the value of the
surface parameter ξ varies with the γ value even when we employ the same boundary.
The dynamic motion of cavitation bubbles was recorded using an Imacon high-speed
camera (John Hadland 790) primarily with framing rate of 100 000 frames/s and
exposure time of 2 µs/frame, together with a Xe flash with a 200 µs pulse duration as
the light source. In this case the frame interval was 10 µs. Since the maximum number
of frames available to the camera was limited to eighteen, which corresponded to a
recording time of 180 µs, the timing for taking high-quality photographs was adjusted
with a delay circuit to which the trigger signal was fed from a photocell. Further-
more, we used a higher framing rate of 5 000 000 frames/s only for the purpose of
observation of the very early stage of the growth of laser-induced cavitation bubbles.
The maximum bubble radius, Rmax, was directly determined from the photographs
obtained, but for bubbles with period longer than 180µs we indirectly estimated
Rmax from the simultaneously measured pressure versus time curves. Because the time
difference between the first two pressure peaks exactly coincides with the period of
the motion of a single bubble (Tomita & Shima 1990), the pressure measurement was
carried out by a pressure transducer (Kistler Instrumente AG, Switzerland, model
603B, with a 5.55 mm diameter sensitive element, a resonant frequency of 400 kHz,
and a rise time of 1 µs) which was positioned 10 mm from the bubble generation.

3. Theory
3.1. Shape of a curved wall

A curved wall can be expressed as a steady streamline as a result of the combined
flows induced by two point sources with different strengths. As shown in figure 15(a)
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in the Appendix, if a bubble pulsating at the point O (0, 0, h) is simulated by a
point source with strength m(= 4πR2Ṙ) and the corresponding image with strength
mA(= ξ2m) is placed at the point A (0, 0,−ξh), we obtain the curved wall as a steady
streamline intersecting the axial line at the origin M (0, 0, 0), where OM = h and
MA = ξh. The condition of no flow across the curved wall leads to the following
equation with the curvature at the point M being 3(ξ−1)/(4ξ) (Takahira et al. 1989):

cos θ1 − ξ2 cos θ2 = 1− ξ2, (1)

where the angles θ1 and θ2 are defined in figure 15(a) (see the Appendix). Equation
(1) determines the shape of a curved wall once ξ is specified. If we instead represent
(1) in terms of Cartesian coordinates with x = r sin θ1 cosω, y = r sin θ1 sinω and
z = h− r cos θ1 taking account of the geometric relations on the curved wall surface,
we obtain

f(x, y, z) = {x2 + y2 + (h− z)2}1/2bξ2(z + ξh) + (1− ξ2){x2 + y2 + (z + ξh)2}1/2c
−(h− z){x2 + y2 + (z + ξh)2}1/2

= 0. (2)

Since the bubble position h is initially equal to L, it is clearly seen that the value of
ξ must be related to the ‘stand-off’ parameter γ in order to satisfy (2).

3.2. Boundary integral method

We assume for most of the lifetime of a bubble that the liquid surrounding it is inviscid,
incompressible and irrotational. The fluid velocity can therefore be represented as the
gradient of a potential φ which satisfies Laplace’s equation.

The boundary integral formulation has become a standard method for simulating
the unsteady motion of an ideal fluid bounded by a free surface. It has been partic-
ularly successful in predicting aspects of bubble collapse such as the penetration of
the liquid jet when a bubble is near a rigid boundary (Blake & Gibson 1987; Blake
et al. 1993). In integral form, the Laplace equation becomes (Tong et al. 1999)

1
2
φ(x) =

∫
∂Ω

(
∂φ(x′)
∂n′

G(x, x′)− φ(x′)
∂G(x, x′)
∂n′

)
dΩ′, (3)

with x and x′ being the position vectors where x, x′ ∈ ∂Ω (assumed smooth), and
G(x, x′) = 1/(4π|x− x′|) + |image| is the Green’s function consisting of a source and
its image in the curved rigid boundary. The normal direction is taken to be outward
from the liquid domain (i.e. into the bubble). Up to the time that jet impact occurs,
the flow field is simply connected, but upon impact, the flow field becomes doubly
connected and thus equation (3) is no longer not valid. To overcome this mathematical
difficulty Best (1993) put a cut C across the liquid jet. Velocities on both sides of
the cut are equal, but there will be a jump in the potential ∆φ corresponding to the
circulation around the bubble. The new modified integral equation becomes

1
2
φ(x) =

∫
∂Ω

(
∂φ(x′)
∂n′

G(x, x′)− φ(x′)
∂G(x, x′)
∂n′

)
dΩ′ − ∆φ

∫
C

∂G(x, x′)
∂n+

dΩ′, (4)

where n+ denotes the normal directed into the liquid on the surface of C away from
the rigid boundary. A full description of the method can be found in Best (1993) and
related explanations in Blake et al. (1998) and Tong et al. (1999).

Though the surface tension effect may be important during the late stage of
the bubble collapse, it can induce numerical instabilities where there is a loss of
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smoothness in the bubble surface and this may finally lead to failure of the calculation.
We therefore neglect the surface tension effect when adapting the boundary integral
method to the problem under consideration. The liquid pressure at the bubble surface,
pr=R , is now expressed by

pr=R = pv + p0

(
V0

V

)κ
, (5)

where pv is the vapour pressure of water, p0 the initial gas pressure and V0 the
initial bubble volume at the time t0 immediately after the bubble inception, and κ the
polytropic index.

The bubble surface and rigid boundary are discretized in a plane through the axis
of symmetry and the resulting system of equations is solved for ∂φ/∂n on the bubble
surface and for φ on the curved boundary. This leads to the construction of the
free-surface velocities which are used to advance the bubble surface forward in time
by means of the kinematic and dynamic boundary conditions written in the following
dimensionless form:

Dx∗

Dτ
= ∇φ∗, x∗ ∈ S∗b , (6)

Dφ∗

Dτ
= 1

2
|∇φ∗|2 − p∗

(
V0

V

)κ
+ 1, (7)

where φ∗ = φ/[Rmax(∆p/ρ)1/2] with ∆p = p∞ − pv , p∗ = p0/∆p, τ = t(∆p/ρ)1/2/Rmax,
x∗ = x/Rmax and S∗b = Sb/Rmax. Here p∞ is the ambient liquid pressure, ρ the liquid
density, and Sb the bubble surface, and buoyancy effects are neglected for the small
bubbles considered here. Finally, D/Dτ denotes the material derivative.

For the numerical computations an informed choice must be made for the initial
conditions since the bubble contents and rate of expansion near the time of the
laser pulse in the experiments are unknown and need to be approximated. Thus the
cavitation bubble is assumed to be initially spherical with a dimensionless radius
R∗0(= R 0/Rmax) = 0.15742, which is realized at the dimensionless time τ0 = 0.0034
from the laser focusing. The initial gas pressure is taken to be p∗ = 100 as employed
by Tong et al. (1999) and the polytropic constant κ = 1.33. The velocity of the bubble
surface at the start of the simulation is chosen from energy considerations so that
the bubble would attain a maximum radius of 1.0 in a liquid of infinite extent. In the
present calculations, a primary concern is to retain similarity between the main features
of the bubble shapes in the BIM computation and in the experiment. Therefore the
time of the bubble period is not exactly matched between the computation and
experiment.

4. Results and discussion
Figure 3(a–e) shows a series of high-speed photographs, each indicating the overall

motion of a bubble near a curved rigid boundary. The photographs were taken with a
framing rate of 100 000 frames/s which gives the frame interval of 10 µs and exposure
time 2 µs for each frame. Figure 3 covers three categories of boundary configura-
tion: convex boundaries in figure 3(a) with ξ = 0.22 and γ = 1.2 (Rmax = 0.89 mm),
figure 3(b) with ξ = 0.47 and γ = 1.5 (Rmax = 0.83 mm) and figure 3(c) with ξ = 0.72
and γ = 2.42 (Rmax = 0.78 mm); a flat boundary in figure 3(d ) with ξ = 1.0 and
γ = 1.38 (Rmax = 0.65 mm); and a concave boundary in figure 3(e) with ξ = 1.19 and
γ = 1.70 (Rmax = 0.75 mm). On each photograph buoyancy is directed downward, so
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Figure 3. High-speed photographs of cavitation bubbles near various curved boundaries; frame interval 10 µs, exposure 2 µs: (a) ξ = 0.22, γ = 1.20
(Rmax = 0.89 mm); (b) ξ = 0.47, γ = 1.50 (Rmax = 0.83 mm); (c) ξ = 0.72, γ = 2.42 (Rmax = 0.78 mm); (d ) ξ = 1.00, γ = 1.38 (Rmax = 0.65 mm); (e)
ξ = 1.19, γ = 1.70 (Rmax = 0.75 mm).
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that both the buoyancy and secondary Bjerknes force are in the same direction.
However, the buoyancy is negligible because the bubbles generated in the present
experiment are very small. Clearly the bubble motion varies depending not only on
the geometry of the nearby boundary (ξ) but also on the initial bubble location
from the boundary surface (γ). As the parameter ξ increases, the bubble motion is
gradually delayed due to the increased inertance of the nearby boundary which is
reflected in the increased strength of the image source in the image system. In fact
we can evaluate the bubble period of figure 3(e) to be 158 µs which is slightly longer
than the bubble period obtained for the flat boundary condition with an identical
γ value. In each case of figure 3(a–e), a bubble grows almost spherically, but the
bubble shape evolves differently during the collapse process: a ‘cone-shaped’ bubble
is formed in the convex wall case, i.e. ξ < 1 (see, for example, figure 3a) while only
a small deviation from the spherical shape can be seen for the concave wall case, i.e.
ξ > 1 (see figure 3e). During the collapse phase of a bubble near a convex boundary,
the fluid flow surrounding the bubble converges towards the bubble centre, except
for the very narrow region of flow field between the lower bubble surface and the
top of the convex boundary where the Bjerknes force is still significant, resulting in
a marginal bubble migration toward the boundary. When the curvature of a convex
boundary becomes infinite, that is for much smaller ξ, the flow distribution could
be similar to that created in the fluid near a conical boundary (Tomita et al. 1991)
which may produce a self-similar flow distribution by a bifurcation in flow (Peregrine,
Shoker & Symon 1990).

Best & Blake (1994) derived the dimensionless period of the bubble motion (i.e.
growth and collapse) in the general form

τp = 2√
6

{
B
(

5
6
, 1

2

)
+ 1

2
µB
(

7
6
, 1

2

)}
= 1.829(1 + 0.4065µ), (8)

where B is an incomplete beta function. The leading term on the right-hand side of
(8) is exactly the same as the period of a Rayleigh bubble in an infinite volume of
liquid (Rayleigh 1917) and µ is the so-called prolongation coefficient, affected only by
the surface geometry of the boundary. Noting that the strength of an image located
behind the curved wall at z∗(= z/Rmax) = −ξγ is ξ2m, we obtain the coefficient µ as
follows:

µ =
ξ2

|r − (0, 0,−ξγ)| =
ξ2

γ(1 + ξ)
. (9)

Since µ increases monotonically with ξ, it is obvious that a convex wall (ξ < 1) makes
the period of the bubble motion shorter than that obtained in the flat boundary case,
while a longer bubble period will be obtained for a concave wall (ξ > 1). If we define
the distance L′(= βL) from the bubble centre to the initial location of a virtual flat
wall which has the same effect on the bubble period as a curved wall, the requirement
of a flat boundary, i.e. µ′ = 0.5γ′−1, yields

β =
1 + ξ

2ξ2
. (10)

Obviously, the condition ξ < 1 leads to β > 1 where a ‘virtual’ flat boundary is located
far from L, and when ξ > 1 we have β < 1, a closer ‘virtual’ flat boundary.

To discuss the bubble period more generally, it is useful to explore the motion of
a bubble near a sphere because it is one of the most fundamental curved boundaries
to study. Figure 4 is a high-speed photograph of the motion of a 0.88 mm bubble
generated at the location L = 1.41 mm (i.e. γ = 1.6) from the nearest surface of a
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Figure 4. Motion of a bubble in the vicinity of a rigid sphere with the radius of 1.0 mm; γ = 1.61
(Rmax = 0.88 mm), frame interval 10 µs, exposure 2 µs.
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sphere with the radius of 1 mm. Similar to the derivation of (9), we can evaluate the
coefficient µ for the sphere as follows:

µ =
a∗

γ(2a∗ + γ)
− 1

a∗
ln

{
(a∗ + γ)2

γ(2a∗ + γ)

}
, (11)

with a∗ = a/Rmax where a is the radius of the sphere. Knowing a∗ = 1.1364 and
γ = 1.6, we then obtain µ = 0.01665. Since the time interval between the frames of
figure 4 is 10 µs, the first period of the bubble oscillation, Tp, can be determined
as 165 µs. In dimensionless form, we obtain τp = 1.8675. Defining λp as the ratio of
τp to the dimensionless period of a Rayleigh bubble, which is numerically given by
1.829, we finally obtain λp = 1.02. Data measured from the photographs are plotted
on figure 5 for several boundary surfaces including convex, concave and flat walls,
together with two data points for the sphere including the one mentioned above. In
the figure the solid line is the theoretical prediction

λp = 1 + 0.4065µ, (12)

with µ given by (11) for the sphere and by (9) for the curved boundaries (Takahira et
al. 1989). Good agreement is found between theory and experiment in the examples
considered here. On decreasing µ, the value of λp tends to approach unity indepen-
dently of the shape of boundary surface. This is a very reasonable trend because a
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Figure 6. Calculated bubble shapes and centroid positions of a bubble near a convex rigid boundary
with ξ = 0.22 and γ = 1.20 (i.e. corresponding to figure 3a) are illustrated. (a) Bubble centroid
compared to the experimental data denoted by circles, (the solid circle shows a bubble centroid in
rebound). (b) Bubble shapes during the growth process and (c) bubble shapes during the collapse
process.

smaller µ gives a situation where a bubble oscillates far from the boundary surface,
yielding no effective interaction between the bubble and boundary.

Figures 6 and 7 show the characteristic motion of a bubble near a curved rigid
boundary for two selected cases, one corresponding to figure 3(a) with Rmax =
0.89 mm, γ = 1.20 and ξ = 0.22, and the other corresponding to figure 3(e) with
Rmax = 0.75 mm, γ = 1.70 and ξ = 1.19. In both figures 6 and 7, (a) illustrates the
bubble centroid motion and (b) and (c) the bubble shapes changing with time in the
growth and collapse phases, respectively. Figure 6(a) shows the bubble centroid versus
time curves for ξ = 0.22 and ξ = 1.0, where the numerical calculations obtained from
image theory, which agree well with the solution by the boundary integral method,
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are compared with the experimental data denoted by open circles. The solid circle in
figure 6(a) corresponds to the centroid of the bubble in rebound. As already observed
in figure 3(a), the bubble grows and collapses at almost the same position as the
initial one for the whole period of the first bubble oscillation. During a very short
time in the late stage of the collapse, the translational motion of the bubble develops
as a result of momentum conservation and eventually the bubble rebounds after
reaching its minimum volume. This has different characteristics from that of the flat
boundary case, i.e. ξ = 1.0, shown by a dashed line in figure 6(a) which indicates a
marginal migration away from the boundary surface in the growth process followed
by a gradual attraction toward the boundary in the collapse process. Furthermore, we
notice a significant difference in the bubble period between the ξ = 0.22 and ξ = 1.0
cases. Obviously, in the ξ = 0.22 case the bubble period is much shorter than in the flat
boundary case because the nearby boundary modifies the flow field far less, developing
weaker pressure gradients (i.e. a weaker image system). Details of the time evolution
of the bubble shape can be simulated by the boundary integral method and calculated
results are illustrated in figure 6(b) for the growth process and in figure 6(c) for the
collapse. As mentioned above, the bubble expands almost spherically throughout the
growth process, while during the collapse process it gradually changes its surface
configuration, becoming ‘cone-shaped ’.

A liquid jet is formed at the later stage of the collapse, threading the bubble
interior and impacting on the far side of the bubble surface at the elapsed time of
∆τ = 0.0306 after the jet initiation. The position of the bubble centre at jet penetration
can be estimated as z∗(= z/Rmax) ≈ 0.8 corresponding to the bubble centroid position
h∗(= h/L) ≈ 0.67 which is close to the experimental point of the bubble centre at
the rebound indicated by a solid circle in figure 6(a). The impact velocity of the jet
is calculated as 159 m s−1 which is about 1.8 times larger than the flat boundary case
with the same γ value for a vapour bubble. At jet impact liquid particles near the
front of the liquid jet and the lower bubble surface decelerate their forward motion
instantaneously. Immediately after the jet impact, the compressible nature of the liquid
becomes dominant over a very short interval, causing shock waves to propagate into
the flow fields. Consequently a water hammer pressure, approximately evaluated as
ρcVjp/2 with c being the sound velocity in liquid, is generated with the peak value
equal to 117 MPa, but lasting for an extremely short duration, estimated to be less
than 16 ns since the jet tip radius can be evaluated as 0.0253Rmax. Following the jet
impact, complicated flow phenomena will be induced in the form of a pair of vortices
and the formation of a splash. These phenomena have recently been investigated
using sophisticated computational techniques, and further details may be found in
Best (1993), Zhang et al. (1993), Blake et al. (1998) and Tong et al. (1999).

Figure 7 shows the results associated with the concave boundary (ξ = 1.19), as
recorded in figure 3(e). As mentioned above, this boundary can be regarded as a
closer ‘virtual’ flat boundary and one can confirm this by substituting ξ = 1.19 into
(10) yielding β = 0.773 (< 1); the bubble motion is slightly delayed compared to
the flat boundary case with ξ = 1.0 and γ = 1.70, designated by a dashed line in
figure 7(a). The time evolutions of the bubble growth and collapse in figures 7(b) and
7(c), show that the bubble retains its nearly spherical shape until the early stage of
the collapse, but in the final bubble collapse a relatively broad liquid jet is formed.
After the jet penetration has been completed, the vortex ring bubble will move toward
the bottom of the boundary, and subsequently the second collapse of the bubble will
take place in contact with the boundary surface, which is an important situation
responsible for cavitation erosion (Philipp & Lauterborn 1998).
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Figure 7. As figure 6 but near a concave rigid boundary with ξ = 1.19 and γ = 1.70
(i.e. corresponding to figure 3e).

Figure 8 shows a typical example of the motion of a bubble near a convex rigid
boundary including the toroidal phase of the bubble. The stand-off parameter was
taken to be γ = 1.5 which is a familiar value often used for the flat boundary
case in the literature (Plesset & Chapman 1971; Lauterborn & Bolle 1975; Blake
et al. 1986). The corresponding experimentally obtained bubble motion is shown in
figure 3(b) where the curvature parameter is ξ = 0.47 and the maximum bubble radius
0.83 mm. The motion of the toroidal stage of the bubble is illustrated in figure 8(c),
and the growth and collapse processes in figures 8(a) and 8(b), respectively. The
time evolution of bubble growth and collapse is similar to that near a flat rigid
boundary with the same γ value. The impact velocity can be determined as 139 m s−1,
corresponding to a dimensionless impact velocity of 14, which is 27% larger than
that for the flat boundary case (e.g. Blake et al. 1986) because of the increased water
mass resulting from the boundary configuration being convex. As seen in figure 8(c),
the toroidal bubble rebounds with a gradual migration toward the apex of the
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Figure 8. Calculated examples of various stages of the bubble motion for a commonly used
‘stand-off’ parameter, γ = 1.50, for a bubble near a convex rigid boundary with ξ = 0.47 (i.e.
corresponding to figure 3b): (a) bubble shapes during the growth process, (b) bubble shapes during
the collapse process, and (c) toroidal bubble shapes during the rebound process.

convex boundary producing an elongated shape along the axis of symmetry. In the
experiment a counter-jet can be seen, for example in the 16th frame of figure 3(b), in
the relatively early stage of the bubble rebound, but the numerical simulation based
on the incompressible theory does not capture this phenomenon. This is believed
to be due to the compressible nature of liquid during the rebound of the toroidal
bubble, which rapidly squeezes a part of the liquid jet, causing a toroidal shock wave.
Subsequently a tension wave associated with the reflection of the shock wave from
the inner surface of the toroidal bubble occurs and focuses on the axis of symmetry
to yield a secondary cavitation like that generated near the bottom of the hump of a
rising free surface as reported by Tomita et al. (1991). Lindau & Lauterborn (2001)
clearly observed the evolution of a counter-jet, disintegrating into a number of tiny
bubbles.

Figure 9 illustrates the bubble migration at the minimum bubble volume, defined as
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Figure 9. Bubble centroid position at the minimum bubble volume is dependent not only on the
parameter ξ but also on γ. Maximum bubble migration takes place for ξ > 1 which means that the
boundary surface is concave.
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(= hRmin

/L), versus parameter ξ curves for γ = 1.5, 2.4 and 5.0. Experimental data
for each h∗Rmin

value were determined by interpolation with several data points associ-
ated with bubble centroid before/after the minimum bubble volume. The theoretical
curves were produced by integrating (A 14) and (A 15) (see the Appendix). A compar-
ison between the theory and experiment indicates a fairly good agreement for γ = 2.4,
but a definite discrepancy is found for γ = 1.5. A main reason for the discrepancy
results from the error in finding the bubble centroid, because the time resolution for
photographing the event is insufficient to capture the high-speed phenomena revealed
at the final bubble collapse. In addition the image theory loses its validity when γ
becomes small. In the region of smaller ξ, corresponding to a boundary with higher
curvature, the h∗Rmin

value approaches unity independently of γ owing to the significant
reduction in the Bjerknes force. A very interesting feature appears for ξ > 1 where
the h∗Rmin

curve takes a minimum. This is definite evidence that a slightly depressed
boundary surface can attract a bubble quite effectively, and in consequence of this
migration the possibility of that the second bubble collapse occurs on the bottom
of the concave surface will increase. The position giving the minimum varies with γ,
shifting to larger ξ with increasing γ.

It is worth exploring the effect of the geometry of a boundary surface on the
impact velocity of a liquid jet, since it is regarded as one of the important factors in
cavitation damage. In relation to the erosion problem, a particularly relevant situation
is where a vapour bubble is in contact with the boundary surface (i.e. γ = 1) because
this is very close to the situation where the maximum jet damage could be achieved
because the jet impact on the boundary can occur at the moment of minimum bubble
volume (Kling & Hammitt 1972). Therefore, taking γ = 1, numerical calculations were
carried out by using the boundary integral method. To elucidate the effect of ξ on the
impact velocity of a liquid jet formed inside a vapour bubble, the calculations were
conducted to obtain the jet impact velocity which is normalized with that obtained for
the flat boundary case, i.e. V ∗jp(= Vjp(ξ)/Vjp(ξ = 1)). The calculated results are plotted
against ξ on figure 10 as a curved solid line, with a dashed line in the region ξ < 0.4
where a liquid jet directed away from the boundary is formed under some conditions.
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Figure 10. Effect of the parameter ξ on the liquid jet velocity for the case γ = 1.0. When a vapour
bubble collapses near a convex boundary (i.e. ξ < 1), especially for high wall curvature, the jet
velocity is much higher than that of the flat boundary case. The dashed line for ξ < 0.4 shows the
region where a collapsing bubble tends to detach from the boundary to form a liquid jet directed
away from the boundary. However the formation of this kind of liquid jet is very sensitive to the
initial conditions.

Obviously there exists a region of V ∗jp > 1 when ξ < 1 where the jet impact occurs
on the top of the boundary surface and its velocity always exceeds the jet velocity
achieved from the bubble in contact with a flat boundary, i.e. Vjp(ξ = 1). However
in the region ξ < 0.4, a collapsing bubble tends to detach from the boundary to
form a liquid jet directed away from the boundary. When ξ = 0.4, we obtain a V ∗jp
value that is 2.47 times larger than that for ξ = 1. On the other hand, the jet impact
velocity in the region ξ > 1 is always below the value of Vjp(ξ = 1). As a result, when
a boundary surface becomes rough due to exposure to cavitation for a long time,
smaller bubbles can collapse intensively, producing much higher liquid jets velocities
and impact pressures. This model of high pressure generation seems to be important
and may be realized very often in real situations.

As mentioned above, we should note that a significant feature appears on the
bubble surface for a boundary with small ξ. The calculations indicate the formation
of a liquid jet directed away from the boundary when ξ is less than 0.4. Figure 11
is an example of a calculation for ξ = 0.2 for almost the same conditions used in
the experiment of figure 12(a) below, except that, in the latter case, the bubble
initial location is closer to the boundary and the bubble becomes attached during
the collapse. The bubble surface shapes are very similar for the calculation and
experiment, excepting the evidence of the bubble detachment which occurs in the
calculation during the later stage of the collapse where the inflow induced along the
boundary leads to the liquid jet formation originating from the bubble surface closest
to the boundary and directed away from the boundary. This opposing jet forms before
the formation of a liquid jet towards the boundary and there is an impact of the
two jets inside the bubble. However, the formation of a jet away from the boundary
is very sensitive to the initial conditions. In certain cases there is a slowing of the
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Figure 11. Two liquid jets form in opposite directions during the collapse of a bubble close to a
convex boundary with the conditions ξ = 0.2 and γ = 1.0: (a) bubble shapes during growth; (b)
bubble shapes during collapse.

initial jet away from the boundary and then jetting in a ring around this first jet, still
directed away from the boundary, but followed by a jet towards the boundary. For
ξ < 0.2, the opposing jet begins to form but is more like an irregularity in the surface
as the bubble continues to collapse.

When a bubble collapses when attached to a convex boundary, several modes of
collapse can be observed. Figures 12–14 show five examples of high-speed photographs
indicating the collapse of bubbles attached to two kinds of convex boundaries, which
are the same as those in figures 3(a) and 3(b), subsequently followed by the rebound
processes. Figure 12(a) is the case with ξ = 0.19 and γ = 0.95 (Rmax = 1.08 mm)
where a bubble begins to collapse when almost in contact with the apex of the curved
boundary, and the shape of the bubble surface closer to the boundary gradually
changes into a ‘cone-shape’ due to the pressure gradient induced by an inward flow
along the curved boundary. During the last stage of the collapse the opposite bubble
surface further from the boundary becomes flat, causing a high-speed axial liquid jet
directed towards the boundary. Figure 12(b) corresponds to the motion of a smaller
bubble with ξ = 0.26 and γ = 0.28 (Rmax = 0.82 mm). A notable feature can be seen
in this case: the bubble shape becomes slightly oblate when it reaches its maximum
volume. During the early stage of the collapse the contraction proceeds at almost
the same rate over all the bubble surface. However in the later stage of the collapse,
a difference appears on the portion of the bubble closest to the boundary which
collapses faster than the opposite bubble surface. In the 4th frame a counter-jet-like
projection can be seen on the axis of symmetry, but no bubble separation occurs. After
the rebound ceases, the slender projection and the attached bubble again collapse
with different time scales. These observations indicate two features; one associated
with the liquid jet formation during the final stage of the bubble collapse, remaining
as a black line inside the attached bubble during its rebound process; the other
concerned with the slender projection which is a secondary cavity because it behaves
differently from the main bubble, reaching a minimum volume during the 11th and
12th frames and then rebounding. The change of the bubble surface with the lapse of
time, especially the curvature variation, is clearly seen in the series of enlarged pictures
of figure 13 where the conditions are ξ = 0.25 and γ = 0.22 (Rmax = 1.57 mm). The
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Figure 12. Collapse process and the subsequent motion of cavitation bubbles attached to a curved boundary identical with that used in figure 3(a),
frame interval 10 µs, exposure 2 µs: (a) ξ = 0.19, γ = 0.95 (Rmax = 1.08 mm); (b) ξ = 0.26, γ = 0.28 (Rmax = 0.82 mm).
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Figure 13. Pronounced deformation of the surface of a cavitation bubble attached to a curved
boundary, which is identical with that used in figure 3(a), with the conditions ξ = 0.25 and γ = 0.22
(Rmax = 1.57 mm); frame interval 10 µs, exposure 2 µs.
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Figure 14. Interaction of an attached bubble with a convex boundary, which is identical with that
used in figure 3(b). In (a) with the conditions of ξ = 0.18, γ = 0.87 (Rmax = 1.47 mm), the jet impact
with the boundary is a significant feature but no bubble separation occurs. In (b) with ξ = 0.65,
γ = 0.33 (Rmax = 1.05 mm), a strong interaction results in the bubble separation: frame interval
10 µs, exposure 2 µs.

highest-curvature region moves faster towards the opposite bubble surface. The 6th
frame shows the bubble behaviour immediately before its collapse point, indicating
a much smaller cylindrical shape accompanied by a black spot at the top which is a
very fine liquid jet directed downwards with a velocity of 103 m s−1 averaged between
the 5th and 6th frames.

Figure 14 shows two sets of high-speed photographs indicating the motion of
a bubble attached to the same convex boundary as in figure 3(b). Figure 14(a)
corresponds to the conditions of ξ = 0.18 and γ = 0.87 (Rmax = 1.47 mm) where a
bubble is attached to the boundary surface when it reaches maximum volume. During
the collapse process, the bubble becomes elongated in the direction of the axis of
symmetry due to momentum conservation. No bubble separation occurs; instead a
sharp edge can be seen on the opposite bubble surface in the 13th frame, leading to
the liquid jet formation. On the other hand, figure 14(b) corresponds to the conditions
ξ = 0.65 and γ = 0.33 (Rmax = 1.05 mm) with the bubble shape being oblate at its
maximum volume. A mushroom-like bubble is formed, changing its configuration
drastically during the later stage of the collapse. An inward flow along the curved
boundary pushes up the cap of the bubble from below to promote the elongation
of the neck of the mushroom-like bubble. Because of the higher curvature at the
cap, it collapses faster than the other parts of the bubble surface resulting in the
production of a radial jet flow. In the 8th frame, bubble separation occurs, creating
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two smaller bubbles. After the separation has been completed, a newly created
attached bubble expands on the boundary surface and then shrinks. This may be
one mechanism responsible for bubble proliferation. Furthermore, we can observe a
protrusion appearing on the surface of the second bubble separated from the original
bubble, which extends away from the boundary due to the vertical flow along the
curved boundary. The mechanism of protrusion formation in the separated smaller
bubble is due to the high curvature at the separated edges of the bubble surfaces,
followed by a very fine microjet with higher velocity. This phenomenon observed after
the 9th frame is very similar to that reported elsewhere (Lauterborn & Hentschel
1985).

When a bubble collapses attached to a flat boundary we observed neither bubble
separation nor the pinch-off phenomenon within the limits of the present experiment.
For a boundary with an even slightly convex shape, however, a pinch-off phenomenon
occurred. Consequently we conclude that an important factor in the generation of
bubble separation is the bubble shape being oblate at its maximum volume. In
fact there are several experimental results regarding bubble separation. For instance,
Tomita & Shima (1990) found a mushroom-like shape of the bubble surface when a
bubble collapses attached to a rubber surface, followed by pinch-off. More recently
Brujan et al. (2001) carried out a very sophisticated experiment on the dynamics of
bubbles near a PAA boundary and showed that bubble separation occurred when
the bubble shape at its maximum volume was oblate. Similar evidence was obtained
by Tomita & Kodama (2001) for the case where two different sized laser-induced
cavitation bubbles were in the vicinity of a free surface. When a smaller bubble
located far from the free surface reaches its maximum volume with an oblate shape, it
collapses, while a larger bubble still continues to grow. In the later stage of the collapse
of the smaller bubble, it becomes mushroom-shaped, resulting in the separation into
two parts into much smaller bubbles which migrate in opposite directions.

5. Concluding remarks
The motion of a cavitation bubble near a curved rigid boundary has been inves-

tigated in detail. Experimentally, the motion of laser-induced cavitation bubbles was
followed by using high-speed photography. On the theoretical side, two methods were
applied to gain general knowledge about bubble motion near a curved boundary, one
utilizing the image theory to explore the effect of a parameter ξ on the bubble centroid
and the other the boundary integral method to obtain detailed features of bubble
shape with the lapse of time, including liquid jet formation. Theoretical predictions
show a favourable agreement with the experimental data, especially with regard to
the bubble centroid motion and the bubble period for the first oscillation. The bubble
period is formulated in more unified form by introducing a generalized variable,
indicating that it becomes shorter when a boundary is convex while a concave wall
makes it longer. The most pronounced migration takes place when a boundary is
slightly concave, which is completely different to the convex boundary case where a
drastic suppression of translational bubble motion is evident. The velocity of a liquid
jet impacting on the boundary surface tends to increase with decreasing ξ, becoming
larger compared to the flat boundary case when ξ < 1. For instance in the case of
ξ = 0.4, the jet velocity attained could be nearly two and a half times larger than the
flat boundary result. The results obtained here partly explain existing experimental
findings that indicate a rapid increase in mass loss appearing after an incubation
period of vibratory cavitation erosion.
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Figure 15. Image systems for (a) bubble pulsation and (b) translational bubble motion.

In conclusion the surface roughness of a boundary must be one of the essential fac-
tors in promoting cavitation erosion. Bubble separation occurs when a bubble, which
is oblate at maximum volume, collapses while attaching to a convex boundary surface,
followed by bubble splitting, which may be responsible for bubble proliferation.
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Appendix
The global bubble motion can be simulated by introducing a series of images

(Cole 1948). The radial bubble motion requires a combination of point sources and
line sinks and their images which are positioned at a distance ξh behind a point
M as shown in figure 15(a). In a similar manner, as indicated in figure 15(b), the
translational bubble motion can be simulated using dipoles and their images which
are positioned at a distance ζh behind point M in order to satisfy the boundary
condition on the curved wall, where ζ is a function of ξ. The potential φ of the whole
system is now given by

φ = Ṙφr + ḣφz, (A 1)

with Ṙ = dR/dt and ḣ = dh/dt where R is the bubble radius at time t and h the
distance from the bubble centre to the origin M at time t. In addition, φr and φz

represent the unit velocity potentials for radial and translational components which
each satisfy Laplace’s equation with the boundary conditions

∂φr

∂n
= −1,

∂φz

∂n
= − cos θ (A 2)
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on the bubble surface, and those on the curved rigid boundary given by

∂φr

∂n
= 0,

∂φz

∂n
= 0. (A 3)

The kinetic energy of the liquid surrounding a bubble can be expressed in terms of
the velocity potentials φr and φz as follows (Milne-Thomson 1968):

T =
ρ

2

{
Ṙ2

∫
S

∫
φr dS + 2Ṙḣ

∫
S

∫
φz dS + ḣ2

∫
S

∫
φz cos θ dS

}
. (A 4)

Within the limit of the first-order correction in the flow field, we finally obtain the
kinetic energy of the liquid in the following form:

T = 2πρ(1 + f0)R
3Ṙ2 − 4πρf1R

3Ṙḣ+
πρ

3
(1 + 3f2)R

3ḣ2, (A 5)

where

f0 =
ξ2R

h(1 + ξ)
+

ξ4R2

h2(1 + ξ)2 − ξR2
− ξ4 ln

{
h2(1 + ξ)2

h2(1 + ξ)2 − ξR2

}
, (A 6)

f1 =
ζ3

2

{
R

h(1 + ζ)

}2 [
1 + η3

{
R3

h3(1 + ζ)(1 + η)2

}]
, (A 7)

f2 =
ζ3

3

{
R

h(1 + ζ)

}3
[

3 + 2η3

{
R

h(1 + η)

}3
]
. (A 8)

The variables ζ and η in (A 7) and (A 8) are functions of ξ, relating to a series of
dipole sources and their images. To form a curved boundary the following relation
between the angles θ1 and θ3 is required:

sin θ1 = ζ sin θ3, (A 9)

which must satisfy (1).

Derivation of ζ = ζ(ξ) for ζ 6 1

Since (1) and (A 9) must be satisfied at the arbitrary point Q on the convex
boundary surface, when we take θ2 = π/2, we obtain

ζ =
1

(2− ξ)
{−(1− ξ)2 +

√
(1− ξ)4 + ξ(2− ξ)(3− 2ξ)}, (A 10)

which yields ζ = 1 when ξ = 1 and ζ = 0 when ξ = 0.

Derivation of ζ = ζ(ξ) for ζ > 1

When θ1 = π/2 and dealing with the relations in a similar manner to the above,
we obtain

ζ =
ξ(3ξ − 2)

(ξ2 + 2ξ − 2)
, (A 11)

which gives ζ = 1 when ξ = 1 and asymptotes to ζ → 3 when ξ → ∞. Although the
difference between the configurations of a curved wall expressed by (1) and by (A 9)
becomes evident in the region θ2 > π/2 for ξ < 1 and θ1 > π/2 for ξ > 1, a very
good agreement between them is found in the range 0 6 θ3 6 π/2. The variable η is a
function of ξ and ζ, which can be determined in a similar manner to the derivations
of (A 10) and (A 11).
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Because buoyancy effects are negligible when the bubble is small, the bubble internal
energy E can be expressed as

E(R) = −
∫ ∞
R

(pr=R − p∞) dV

=
4πR3

3

[
p∞ − pν − p0

(1− κ)

(
R0

R

)3κ

+
3σ

R

]
(A 12)

provided the gas contents inside the spherical bubble obey a polytropic law and where
pr=R is the liquid pressure at the bubble surface given by

pr=R = pν + p0

(
R0

R

)3κ

− 2σ

R
. (A 13)

In the above expression, R0 is the initial bubble radius at time t0 and σ the surface
tension of the liquid. We, therefore, determine the simultaneous ordinary differential
equation of motion of a bubble by applying the method of Lagrange. This leads to
the following equations for the bubble radius R and the translational displacement h
as generalized:

R̈ =
−1

R(1 + f0 + 3f2 + 3f0f2 − 6f2
1)

×
{

3
2
Ṙ2

[
(1 + 3f2)

(
1 + f0 +

R

3
f0,R

)
− 2f1(6f1 + Rf0,h + 2Rf1,R)

]
+Ṙḣ[R(1 + 3f2)f0,h + 3f1(1 + 3f2 + Rf2,R)]

− ḣ
2

4
[(1 + 3f2)(1 + 3f2 + 4Rf1,h + Rf2,R)− 6Rf1f2,h]

− (1 + 3f2)

ρ

[
pν + p0

(
R0

R

)3κ

− 2σ

R
− p∞

]}
, (A 14)

ḧ =
−1

R(1 + f0 + 3f2 + 3f0f2 − 6f2
1)

×
{

3
2
ḣ2[R(1 + f0)f2,h − f1(1 + 3f2 + 4f1,h + Rf2,R)]

+3Ṙḣ[(1 + f0)(1 + 3f2 + Rf2,R) + 2Rf1f0,h]

−3Ṙ2[(1 + f0)(3f1 + Rf0,h + 2Rf1,R)− Rf1f0,R]

−6f1

ρ

[
pν + p0

(
R0

R

)3κ

− 2σ

R
− p∞

]}
, (A 15)

where

f0,R =
∂f0

∂R
, f0,h =

∂f0

∂h
,

fi,R =
∂fi

∂R
+

(
∂fi

∂η

)(
∂η

∂R

)
, fi,h =

∂fi

∂h
+

(
∂fi

∂η

)(
∂η

∂h

)
(i = 1, 2).

 (A 16)

Equations (A 14) and (A 15) can be solved numerically by means of the Runge–
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Kutta–Gill method with the following initial conditions:

R∗0 = 0.1, Ṙ∗0 =

 2(R∗−3

0 − 1)

3

{
1 +

ξ2R∗0
γ(1 + ξ)

}


1/2

,

h∗0 = 1.0, ḣ∗0 = 0.

 (A 17)

In (A 17), R∗0 = R 0/Rmax, h
∗
0 = h0/L with h0 being the initial distance from the bubble

centre to the boundary surface (≡ L). Furthermore Ṙ∗0 is the initial velocity of the
radial motion of a Rayleigh bubble modified by including the wall effect as expressed
in the second term in the denominator, which can be readily derived by integrating
(A 19) below.

From observations of the very early stage of the growth of laser-induced cavitation
bubbles using the framing rate of 5 000 000 frames/s, the time giving the initial bubble
radius specified in (A 17) is estimated to be τ0 = 0.0012 from the plasma luminescence.
Although the initial laser-induced bubble is not spherical but somewhat elongating
along the optical axis, which is coincident with the symmetric axis of the curved
walls, we experimentally found that some time after the plasma formation, i.e. τ > τ0,
the change of the bubble volume with time gave almost the same results for the
experiment and a Rayleigh bubble (Tomita et al. 2000). It is also reasonable to
assume that a laser-induced cavitation bubble contains both vapour and some non-
condensable gases, probably produced by the dissociation of the water molecules
and/or those existing inside the volume of a plasma dissolved as cavitation nuclei.
In the calculation κ is taken as 4/3. In (A 14) and (A 15), taking ξ = 1 and ζ = 1
easily leads to the equations of motion of a bubble near a flat boundary (Tomita et
al. 1992; Sato, Tomita & Shima 1993).

When taking no account of translational bubble motion (ḣ = 0, ḧ = 0) and provid-
ing no correction for the flow field induced by an image source, the velocity potential
becomes

φr = R2

(
1

r1
+
ξ2

r2

)
, (A 18)

with r1 and r2 being the distances from the bubble centre to the point P in the liquid
and its image centre to the point P , respectively. Assuming that the effect of the
surface tension on the bubble motion is negligibly small and the bubble contains only
vapour we, therefore, obtain the equation of radial motion of a vapour bubble near
a curved wall as follows:

RR̈

{
1 +

ξ2R

L(1 + ξ)

}
+ 3

2
Ṙ2

{
1 +

4ξ2R

3L(1 + ξ)

}
+

∆p

ρ
= 0, (A 19)

which coincides with the equation developed by Takahira et al. (1989).
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